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THE IDENTITIES HIDDEN IN THE MATCHING LAWS, AND THEIR USES
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Various theoretical equations have been proposed to predict response rate as a function of the rate of
reinforcement. If both the rate and probability of reinforcement are considered, a simple identity,
defining equation, or “‘law’’ holds. This identity places algebraic constraints on the allowable forms of
our mathematical models and can help identify the referents for certain empirical or theoretical
coefficients. This identity can be applied to both single and compound schedules of reinforcement,
absolute and relative measures, and to local, global and overall rates and probabilities. The rate
matching equations of Hernstein and Catania appear to have been approximations to, and to have been
evolving toward, one form of this algebraic identity. Estimates of the bias and sensitivity terms in the
generalized ratio and logarithmic matching models are here held to be averaging artifacts arising from
fitting procedures applied to models that violate or conceal the underlying identities.
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The success in the late 1960s and early 1970s
in predicting relative response rates on con-
current interval schedules led to attempts to
predict absolute response rates on schedules
of reinforcement in general. For the case of a
single response class, Herrnstein (1961) sug-
gested a simple proportionality of the form

b=Fkr (1)
where b and r are the mean response and
reinforcement rates respectively. Catania

(1963) suggested a power function which for
the single response case reduced to the form

b=k’ (2)
Herrnstein  (1970) stated that the simple
proportionality did not appear to work well
empirically and proposed a hyperbolic func-
tion

k
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where 7, was assumed to represent sources of
reinforcement other than those specified by
the experimenter and k was assumed to be the
asymptotic rate attainable for that response in
the absence of competition from other sourc-
es. Catania (1973) proposed a mathematically
similar equation

__kCr (4)

C+Z r;

Where kwas a coefficient of proportionality, C
was assumed to represent an inhibitory effect
of reinforcement upon responding, and X 7,
was the total rate of the known sources of
reinforcement.

Each of these formulations treats rate of
reinforcement as the primary variable influ-
encing responding.

It will be shown below that in both single-
response and many choice-response situations
Equation 1 is the more generally correct; that
is, that the exponent is unity and that the
obtained response and reinforcement rates
(and their ratios) are directly proportional,
but that the multiplier is an identifiable
variable rather than a hypothetical constant.

Simple Schedules, Absolute Measures

At the end of a typical operant experiment
one has three totals at hand—the duration of
the session or schedule component of interest
(1), the number of Behavioral responses that
occurred therein (B), and the number of
Reinforcements delivered (R). From these
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three raw totals we frequently derive three
additional variables (or their reciprocals):
response rate b = B/T (or a mean IRT, T/
B); rate of reinforcement r = R/T (or a
corresponding obtained mean VI value 7/R);
and probability of reinforcement given a
response p = R/B (or a corresponding
obtained mean VR value, B/R). We make
these conversions in order to generalize across
sessions or experiments having different abso-
lute totals. Whether the three original num-
bers (B, R and 7T) are viewed as free and
independent of one another, the three derived
variables (6, r and p) are ratios sharing
common terms, hence they are interdepen-
dent. If two of the variable pairs are known the
third is strictly determined. Thus we can write

Response Rate=
Rate of Reinforcement (5a)

Probability of Reinforcement

where the denominator is the ‘“‘conditional’
probability of reinforcement given a response
and all values are obtained as opposed to
programmed.

The word-equation 5a conceals from easy
view that it is equivalent to the algebraic
identity

(R/T) _R
T

B B
(R/B) T R T

2- (5b)

This identity will of course hold for all
values of B, R and 7; and for the grand totals
on any simple, compound or second-order
schedule of reinforcement. It will also hold,
and can be evaluated, for the local totals on
those compound schedules where one can
legitimately determine each component’s
duration and counts (e.g. chain, multiple,
concurrent, but not single-operandum con-
junctive or alternative schedules, where it is
not possible to assign a response exclusively
to one component over the other). It would
hold equally well for dubious or inappropri-
ate cases such as noncontingent time sched-
ules or the differential reinforcement of
“other”” behavior (where the reinforcement
probabilities given B and Not-B are equal, or
zero and nonzero respectively).

Two rearrangements of this identity are well
known. One, often used in the present
context, places R/T on the left and is typically
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used to derive the rate of reinforcement
generated by ratio schedules. The other, often
used in the context of behavioral economics,
places B/R on the left and is used to derive the
response ‘‘cost’” imposed by interval schedules
(where cost equals 1/p). Moving B/T to the left
is trivial mathematically but perhaps signifi-
cant perceptually or interpretively.

One important point this makes is that,
because things equal to the same thing are
equal to each other, any theoretical equation that
accuralely describes or purports to describe or predict
response rate must also equal Equation 5a. The two
equations may then be solved simultaneously
to yield additional relationships, or to reveal
arithmetic incompatibility.

Equation 5a can be abbreviated to the form

b=r/p (5¢)
which may be compared to Equation 1, or
both sides of Equation 5b can be multiplied by
T to give an equation in number and
probability, rather than rate:

R
BZ%ZR/P (6)

The identity can also be inverted and
rewritten in terms of obtained mean inter-
response times, variable-interval values, and
variable-ratio values as

IRT=VI/VR (7)
Although this last equation would seldom be
useful in practice it can be used to make a
somewhat contrived point. In any single
experimental session where the experimenter
imposes a particular VI (or VR) schedule,
there is a post hoc VR (or VI) sequence that
would have produced exactly the same record-
ed result. An uninformed observer, or the
subject, would be unable to tell which was in
effect. Zeiler (1977) has addressed this issue in
the context of control by direct and indirect
variables.

Although these equations are simple alge-
braic tautologies, that does not necessarily
mean that they are trivial. Many, but not all, of
the equations or laws of physics are equally
circular (e.g. E = I+ R, f= m < a) as can be
shown by reexpressing them in their basic
units and dimensions. Such laws are some-
times called defining equations.
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Equations 5 through 7 may be considered
descriptive but not explanatory in the collo-
quial sense. They say more about the particu-
lar behavioral measures we have come to use
for parsing our subject matter than about
behavior per se. Nevertheless, the identity can
be useful in a number of ways ranging from
the philosophical or heuristic to the practical:

1) The identity can be interpreted as a
reminder that even on the simplest
schedule we do not have a single depen-
dent variable but a dependent variable
pair. This is most clearly seen in the case
of simple ratio or interval schedules (e.g.
Equation 7) where the experimenter has
complete or effectively complete control
over one variable while the subject
controls the other two. If it is known
that only one of the dependent variables
is directly influenced by an experimental
manipulation and that the other depen-
dent variable merely follows as it math-
ematically must, then the common prac-
tice of recording and attending to only
one of the two variables may be logically
justifiable, albeit potentially misleading.
In any single isolated experiment the two
dependent variables will be inextricably
confounded and we may arbitrarily de-
cide to call one of them the relevant
consequent and the other an irrelevant
concomitant. Across a series of experi-
ments, however, it may be possible to
separate the two still-confounded effects
based on differential manipulations and
findings and/or a preferred criterion of
“orderliness” such as linearity, invari-
ance, or goodness-of-fit.

The practice of attending to only one of
the two dependent variables becomes less
defensible if both variables are directly
influenced by an experimental manipula-
tion while simultaneously constrained to
obey the numerical identity. We tend to
describe such cases as exhibiting strong
interaction. Possible analogies here might
be simultanecous manipulation of both
sensitivity and bias in Signal Detection
experiments or of speed/accuracy tradeoffs
in reaction time studies—two areas where
double dependent measures have proven
fruitful. Attending to rate while ignoring
probability carries risks.
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2)  The identity suggests a potentially stronger
parallel than usually recognized between the
phenomena identified with “‘rate matching”
and those historically identified with “prob-
ability learning”, or with those more recently
considered in behavioral economics.

3) The identity can also be interpreted as
showing that, as independent variables,
neither rate of reinforcement nor probabil-
ity of reinforcement is logically prior to the
other. Both may act concurrently. Which if
either of the two variables is behaviorally
the more potent or pertinent may differ
with the situation, but the identity still
suggests an inverse relationship.

4)  The identity can also be used simply for
calculating the “missing variable” in an
ongoing experiment, an armchair experiment,
or from a published report. This is the most
frequent use of Ohm’s Law, for example.

5) The identity can also serve as a useful
check on our theoretical models, since they
may not contradict it. As an illustration it
will be used below, first to ask whether
several different matching models are
mathematically allowed, disallowed, or
forced. Finally, we will return to a single-
response case combining the identity with
an empirical finding.

Compound Schedules, Absolute Measures

On a two-ply (two-component) compound
schedule we can distinguish at least 10
different absolute rates grouped into three
distinct sets: Local rates, e.g. R;/T;, Bo/Ty;
global or grand rates, e.g. (By + Bo) /(11 + 1s);
and what have come to be called overall rates,
e.g. Ry/ (17 + T3). The logically completing
fourth set, a kind of ‘‘underall rate”’, e.g. (R, +
Ry) /Ty, has not been deemed useful.

Parallel distinctions can be made for at least
six different local, global, and overall condi-
tional probabilities of reinforcement, for
example, (R, + Ry)/(B; + Bs). Each of these
rate and probability measures can be related to
the others through appropriate algebraic
manipulation. The identity of Equation b5c
holds in a straightforward manner for both the
local and global measures. That is, the local
(global) response rate will equal the local
(global) reinforcement rate divided by the
local (global) probability of reinforcement.
Overall rates and probabilities, being to some
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extent unsymmetrical mixed measures, lead to
their own mixed identities. Thus absolute
overall response rate could be written as either
of the following

B (Ri+tR)/(hi+1y)  globalr (8a)
Ti+Ty  (R+R)/Bi underall p
_R/(Ti+T3) _overall r (8b)

R\ /By local p
where the latter may have some potential
theoretical usefulness.

Compound Schedules, Relative Measures

Having expressions for the various absolute
rates in each component of a compound
schedule allows us to compute various relative
rates as well. It has been traditional practice to
use overall rates for such computations, in
which case all temporal terms cancel, leaving a
dimensionless ratio that resembles a relative
number or frequency rather than a relative rate.
Thus relative overall response rate becomes

B /(T + T) _ By
B /(T +Ts5)+Bo/(T1+T5) Bi+Bs

©)

In the matching literature the term ‘‘rate’” is
still applied, perhaps because all numbers are
normalized to a common session duration,
hour, minute or other temporal unit. In other
contexts and disciplines it might be more
appropriate and conventional to treat this
quantity as a probability, but the now historical
terminology will be followed here.

Using the above definitions and identities,
various expressions for relative overall re-
sponse rates can now be derived. Beginning
with Equation 6, and using subscripts to
denote the two components, we have B; =
R;/p; and By = Ry/p», hence

B, _ Ri/p
Bi+B  (Bi/pr)+(Be/pe)
Multiplying both numerators and denomina-
tors by (p; p2) simplifies to
By _ Ripo
Bi+By  Ripo+Ropr

(10)

(11)

Herrnstein (1970) used a formally equiva-
lent equation in discussing matching under a
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concurrent ratio schedule, though the equa-
tion is a general identity true of all compound
schedules. It is not identical to Herrnstein’s
(1961) matching relationship:

B R

(12)

but reduces to it as a special case if and when p,
= o, as noted by Revusky (1963). Thus
matching is mathematically allowed but not
forced. If relative rate matching does occur then
local and global reinforcement probabilities will
be equal, and vice versa. The two phenomena
(rate matching and equal probabilities) are
confounded correlates, of equal potential sig-
nificance, with neither necessarily being the
cause of the other. It also follows from Equation
11 that when relative rate matching does not
occur (as in undermatching on concurrent
schedules or behavioral contrast on multiple
schedules) it must necessarily be due to differ-
ences in the two probabilities of reinforcement.

Equation 11 does not reduce to a general
equation of the form

B kR
Bi+B R+R

(13)

although for any isolated schedule pair, R; Ry,
one can always find some value for k that forces
numerical equality. However, by dividing the
numerator and denominator of Equation 11
by p, we get the somewhat more familiar form

B R
Bl+Bg _R1+mR2

(14)

where m = p;/po. This too is a general identity
that must always hold.

For the case of a three-ply compound
schedule the corresponding identity can be
variously written as

B, B Ry /pi
Bi+By+Bs  (Ri/pr)+(Ro/po)+(Rs/ps)

_ Ripops
" Ripops+ Roprps+ Rspipo
a Ry
T AR +b Rt Ry
R’y

=R1+m2 R2+m3 Ry
where m ; = p 1/p .

(15)
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Equations 14 and 15 are written for the relative
rates in component number 1, but correspond-
ing equations will hold for components 2, 3, orn.
For notational exactitude m should be doubly
subscripted as m ; ; = p /P ; where i is the
component of interest selected for the numera-
tor. Relative overall response rates for the
generalized case of any n-ply compound sched-
ule (multiple, concurrent or other) can then be
written as either of the following identities

B; R;
1 — 1 16
=B pE(R/p) o
R.
="' 16b
% mij R; (166)

Application to Classic Rate Models

It will be convenient for what follows to
rewrite the last identity as

B R
B RA+Im;R

(17)

where the right-hand summation is over all
components except component number 1. This
awkwardness could easily be avoided by assign-
ing an m term of unity to the R; term in the
denominator and then moving both back
within the summation, but it is left in the less
orthodox form to facilitate comparisons with
Herrnstein’s (1970) theoretical equation

kR

Bl=———
Ri+m Ro+ Ry

(18)

and with Catania’s (1973) theoretical Equation
19 (before C k became a new k)

CkR

Bi= o
T CrZm R,

(19)

Although there are obvious differences be-
tween the last three equations, the similarities
are the more interesting.

Herrnstein (1970) viewed m as an interac-
tion term between components in multiple
schedules, having a value between zero and
one, to be estimated from the data. The
present general account provides an explicit
definition for m, having a value between zero
and infinity, which can be calculated directly
from the raw totals.

251

In the two-ply case Herrnstein (1970) began
with the reasonable first assumption that the m
terms were the same for both components,
whereas in the present account m;, and mg;
are seen to be reciprocally related—becoming
the same only when the two probabilities are
equal, and their ratios are unity. When
unequal, the m terms could be viewed as
representing a differential preference or bias
toward one schedule, stimulus, or response of
a pair.

The terms B and % in Equations 18 and 19
carry the dimensions of ‘responses’ or
“responses per unit time”’ (Catania, 1973;
Herrnstein, 1974) whereas Equations 14-17
are written as dimensionless proportions or
relative rates. The simplest resolution of this
apparent difference is to assume that the term
k represents the quantity (B, + By), or more
generally 2 B ;. Transposing k to the lefthand
denominator makes the similarities among
Equations 17-19 more obvious.

In matching experiments where the total
rate of reinforcement is held constant the
observed response total also appears to remain
relatively constant, or to vary unsystematically
(see Catania, 1963, Figure 2). A constant
response total can also result if the organism
responds at a fixed local rate that remains
invariant with changes in schedule values or
relative durations, as has been reported with
pigeons (Blough, 1963; Stubbs & Pliskoff,
1969). The constancy of k has been assumed
in several theoretical accounts, and these
particular effects would tend to produce it,
but it is not required for X B in the identities,
and many researchers have reported condi-
tions under which it is not (see review by
McSweeney, Melville & Whipple, 1983).

At this point we have rationalized and
redefined the terms m and % in order to make
the theoretical Equations 18 and 19 most easily
consistent with what is algebraically required.
The same approach also leads to questioning
the necessity of the inhibitory term C in
Equation 19 and the reinforcement term R,
in Equation 18.

In Equation 19 the C term in the denomi-
nator should have the dimensions associated
with reinforcement—to prevent adding apples
to oranges, and to cancel the corresponding
dimensions of R in the numerator. But if Cin
the numerator also has these same dimensions
then cancellation no longer occurs and we
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ultimately end up with the statement that a
number equals a dimension. If C in the
numerator does have the dimensions of
reinforcement, then % cannot be a dimension-
less coefficient, nor have the dimensions of
responses or responses per time as in the
Herrnstein (1970) account (and the above
account), but must have the dimensions of
responses per reinforcement (which, interest-
ingly, is equivalent to 1/p in the above). Both
Catania (1973) and Williams and Wixted
(1994) discussed this dimensional necessity.
It would seem less awkward and more parsi-
monious to discard C as unnecessary. Since
Equation 19 already contains an m term for
each R term within the summation, it then
becomes algebraically and dimensionally com-
patible with the required identity of Equation
16b.

The term R, in Equation 18 is assumed to
represent unmeasured hypothetical reinforc-
ers beyond those arranged by the experiment-
er. If there are cases where such intrinsic or
extraneous sources of reinforcement must be
considered, the formal equations require an
additional m;, term on the right and a
corresponding B, term on the left, paralleling
the third components in Equation 15. Identi-
fying the physical referents for such terms and
quantifying their values presents a number of
problems and dangers one would hope to
avoid. The most cautious and parsimonious
approach might be to consider the possibility
that Ry has served as a floating parameter to
account for inaccuracies in the estimates of m
and/or inconstancies in the values of k.
Having explicit definitions for these terms
makes it easier to evaluate this possibility.

If Ry were assumed to exist anyway, then the
three required theoretical terms Ry, m;, and
B, represent only two degrees of freedom
since they too must fulfill the identity By = Ry/
po- In the most general case, there will be no
way of estimating p, independently of R, and
By. However, in the special case where overt
matching occurs and probabilities are equal,
then p, should equal the empirically measur-
able value of p, po, etc. Unfortunately, this still
leaves an infinite number of unmeasurable
Ry/ By pairs that would fulfill the necessary
relationship. This problem cannot be unequiv-
ocally resolved even by the, perhaps tempting,
assumption of a constant k greater than the
observed X B;, such that By = k — X B;. Why?
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Any given n-ply schedule can be expressed as
having only (n — 1) plies by discarding one set
of real terms, or as having (n + 1) plies by
adding appropriately selected imaginary
terms, and in either case the equations will
balance. Any value of k can be made to suffice.
The existence of R, cannot be formally
confirmed or disconfirmed within this closed
system.

It would be interesting to reexamine those
studies where archival data permit comparing
the assumed or computed m values with the
obtained reinforcement probabilities, and the
computed k values with the actual response
sums. A computed k value less than any one of
its contributing sums would seem fatal to the
Ry hypothesis since it would indicate a negative
number of B responses—a notion difficult to
fathom or defend. (McSweeney et al., 1983,
reported a number of cases where the com-
puted R, was negative, which equates to the
same thing.)

The above derivations and analysis suggest
that Herrnstein’s (1970) and Catania’s (1973)
formulations in Equations 18 and 19 are
incorrect in their details or parametric inter-
pretations but are close approximations to the
general identity of Equation 16b. That these
investigators came so close, out of an unlim-
ited number of alternative possibilities, is a
tribute to their hypothetico-deductive skills.

Application to Ratio Models

In the above it has been shown how
identities stemming from Equation 5 deter-
mine or constrain expressions relating re-
sponding and reinforcement, using relative
overall rates as an example. An additional
example will show how it applies to the
alternative measures of response and rein-
forcement ratios.

In concurrent schedules the subject deter-
mines the time allocations 77 and 7Ts, which
usually differ, and the use of relative overall
rates is conventional (following the discovery
of matching). In multiple schedules the
experimenter determines 77 and 7o, which
are usually equated rather than ‘““matched” to
the schedule values, and the use of relative
local rates is conventional. (In a typical
multiple schedule the overall rate B,/(7T; +
To) would equal B,/(27;), or half the local
rate.) However, by using rate ratios the
temporal terms can be made to cancel in both
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cases allowing a common formulation (al-
though possibly concealing an important
underlying distinction).

For multiple schedules, Lander and Irwin
(1968) proposed a nonmultiplicative ratio
power function which Baum (1974) general-
ized to concurrent schedules and matching as

B R\
i S '}
Bo Ry

where «a represents any differential bias and ¢
represents sensitivity (‘censitivity’) to rein-
forcement. Equation 5b, on the other hand,
leads to the identity

B _Ri/p
By Ro/pe

B _ (ﬁ)
By p1 \Ro

with an R ratio exponent of unity and a ‘“‘bias”
multiplier equivalent to m; ; in the above. Many
investigators have found cases where Equation
20 fits data more accurately when the exponent
cdiffers from unity. These cases typically involve
numerical fits computed across several schedule
combinations of R, R, pairs. There are at least
two ways that this result can arise.

First, if the investigator manipulates R;/ Ry
in order to observe its effects upon B,/ By and ¢
then, ideally, @ should be held constant
throughout. If it is not known that a represents
the measurable quantity po/p; then there is no
way of detecting its variation. Instead, one
might assume and impose invariance by fiat.
The resultant fit will therefore be inexact and
it can be improved upon by a power transfor-
mation, a multiplicative correction factor, an
added constant, or any other operation that
introduces one or more free parameters. A
nonunitary ¢ implies a nonconstant a.

Second, if the experimental procedure
allows or causes po/p; to become a direct or
indirect function of R;/R,, then Equations 20
and 21 can hold simultaneously. As an
example of an indirect function, assume that
the organism ‘‘probability matches”, i.e. that it
apportions its responses in the same manner
as the obtained probabilities of reinforcement:

B _p
B I

(20)

(21)

(22)
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Note that this is not an identity but a
hypothetical empirical finding. Substituting
for po/p1 in Equation 20 yields

Bl B (R
Bo B \R)’

Transposing the response terms on the right
to the left gives

() - ()

ﬂ_ (ﬁ)l/Q
By \ Ry

Equation 25 is still equal to Equation 21, but
the reinforcement probabilities have become
indirect (and hidden) functions of the rein-
forcement rates. This can be revealed by
rewriting Equation 25 as

B R\2 R\

ne(n) ()
If, instead, the reinforcement probabilities were
equal to, or proportional to, some other power
than 1/2, for example p; = kRICand po=F ch
then the (R;/Ry) exponent would become 1-¢
with a = k'/k. Many other p = f(R) relationships
are of course possible, yielding different (R;/Rs)
exponent values and nonunitary as. Identifying
such relationships will require attending to
measured probabilities as well as rates.

(23)

(24)

hence

(25)

(26)

The Matching Law “Constants” as
Averaging Artifacts

If an experiment employs, say, five different
R; R, combinations, then Equation 21 will
hold for each individual set of triple pairs.
However, in most cases each different R;/R,
pair will generate a different B;/ B, pair and a
different po/py pair, hence a different local a
value. That is, there is no forced invariance,
constancy or even continuity across the five
conditions. All can change.

Consider an experiment in which a subject
exhibits bias but neither under- nor over-
matching and ¢ = 1. If one fits and estimates
the best constant @ across all five pairs then the
value of this a will usually fall somewhere
between the obtained minimum and maxi-
mum values of the five po/p; pairs. That is, it
will be some average, though not necessarily
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Table 1
Data from Baum, Schwendiman and Bell (1999) for Bird 973 on 12 concurrent VI VI schedules.
Key 1 Rich Key 1 Lean

B, By Ry Ry By By R Ry
14217 2646 793 87 7051 10847 168 552
29241 3345 1853 67 3190 52281 35 2365
138469 325 7985 15 766 38959 15 1825
28572 9272 2244 316 7121 12042 247 1033
61808 1907 3585 15 889 48641 19 2541
77265 557 3667 13 1513 50724 16 2704

raw log o raw log o

41 P po/ 1 P2/ 4! P P2/ o/ 1
0.0558 0.0329 0.5895 —0.7625 0.0238 0.0509 2.1359 1.0948
0.0634 0.0200 0.3161 —1.6616 0.0110 0.0452 4.1230 2.0437
0.0577 0.0462 0.8004 —0.3213 0.0196 0.0468 2.3922 1.2583
0.0785 0.0341 0.4339 —1.2044 0.0347 0.0858 2.4731 1.3063
0.0580 0.0079 0.1356 —2.8824 0.0214 0.0522 2.4443 1.2894
0.0475 0.0233 0.4918 —1.0240 0.0106 0.0533 5.0409 2.3337
Geometric Mean = 0.4035 Geometric Mean = 2.9371
Arithpetic Mean = —1.3094 Arithmstic Mean = 1.5544

2 (—1.3094) = 0.4035 2 (1.5544) = 2.9371

Note. Top portion is the obtained number of responses (B;) and reinforcers (R;), separated by whether key-1 was the
Rich or Lean schedule of each pair. Middle portion shows the obtained probabilities of reinforcement (p;) on each key
(as R;/B;) and their absolute and logs ratios. Bottom portion shows that means of the latter give the same bias and
log (bias) values estimated by the authors’ using a least squares fit on the logs(R) and logs(B) ratios, when matching was

assumed.

their arithmetic mean. It can be shown that if
one fits Equation 20 using a least squares
fitting procedure on the obtained values, then
the fitted a will equal the geometric mean of
the obtained po/p; values. If instead of the
ratio form of the matching law one fits Baum’s
(1974) logarithmic form

log(Bi/By)=log a+clog(Ri/Ry) (27)
using least squares, then the best fitting log «
value will equal the arithmetic mean of the five
log (po/p1) pairs. When unlogged, this neces-
sarily gives the same value for a as the
geometric mean.

The same thing will result using a dataset
where over- or undermatching occurs if one
forces cto equal 1 and then refits. This will be
demonstrated using data from Baum, Schwen-
diman and Bell (1999). This study exposed 4
pigeons to Conc VI VI schedules having a
range of reinforcement rate ratios counterbal-
anced across two keys. When the data were
conventionally plotted as log response ratios
versus log reinforcement ratios (that is, of log
[ Brirr/Bricur] versus log [Rigrr/Rricrr]) the
fitted lines showed minimal bias (log a = 0)

but noticeable undermatching (¢ < 1 = 0.8),
as most typically seen in other studies. When
the ratios were instead dichotomized (sub-
scripted) by preferred and nonpreferred
schedule values, independent of key position,
a different picture emerged with negative log
bias and near matching (¢ = 1). For 1 of their
4 pigeons they replotted the ‘‘Left/Right”’
data showing the function not as one contin-
uous line of reduced slope but as two separate
lines of near-unit slope and opposing bias.
They then forced the two slopes to be exactly
equal (at ¢ = 1) and solved for the “Lean and
Rich” bias values separately, getting log(a)
values of 1.55 and —1.31 respectively. Table 1
shows how these same values can be obtained
by averaging the raw or logged data values
without an explicit least squares fitting proce-
dure.

The same thing will result using a dataset
where the empirically obtained ¢ is unity or
near unity without being ‘‘“forced’. Such data
sets are rather rare but Table 2 presents one
example where the raw data values are publicly
available. This example is derived from the
Appendix and Table 2 of Elliffe and Alsop
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Table 2
Data from Elliffe and Alsop (1996) for Bird 131 on five concurrent VI VI schedules where near
matching occurred (¢ = 1.01).

B,;/B, Ri/Ry p2/P1 log B;/B> log R;/R; log po/pi
0.370768 0.845238 0.438656 —0.4309 —0.07302 —0.35788
0.06206 0.084337 0.735853 —1.20719 —1.07398 —0.13321
2.417017 3.394737 0.711989 0.38328 0.530806 —0.14753
0.199578 0.24812 0.804358 —0.69989 —0.60534 —0.09455
7.953125 9.388889 0.847078 0.900538 0.972614 —0.07208

Geometric Means Arithmetic Means
0.615416 0.891695 0.690164 —0.21083 —0.04978 —0.16105

Note. Top portion lists the absolute and log; ratios of the obtained responses, reinforcers, and (inverse) probabilities
of reinforcement. Means of the p ratios give the same bias and log bias values obtained by the authors using a least

squares fit on the log B and log R ratios.

(1996) for Bird 131 under one reinforcement/
min, where the reported log bias value was
—0.16 with a ¢ of 1.01 (close enough to unity
for the present purpose).

Again, it is seen that the fitted log bias value
equals the arithmetic mean of the log p./p;
values.

Finally, consider the more common case of
inexact matching. If one interprets the fitted «
value as a true constant then, since it usually
isn’t, the fit will not be optimal and a better fit
will result by introducing a free parameter ¢
and estimating both parameters simultaneous-
ly. In this case the two fitted parameters will
seldom be identifiable simple means of any of
the raw data values. Table 3 gives an example
derived from the appendix of Davison and
Jones (1995) for Bird 21lwhere the reported ¢
was 0.54 and log a was 0.00 (a concurrent VI
Extinction condition has been omitted to
avoid division by zero).

In this case the arithmetic mean of the log
p2/p; values is not 0.00 (actually 0.0004 before
rounding) but —0.095.

Interestingly, there is still some hidden
underlying order. Equation 21 holds for each
row of ratio triplets taken individually, as it
must, but also applies to the means of the
entire dataset. That is, the geometric mean of
the n B;/B; ratios equals the geometric mean
of the n p,/p; ratios times the geometric mean
of the n R;/R; ratios. Similarly, the arithmetic
mean of the log B;/B; ratios equals the sum of
the arithmetic means of the two correspond-
ing log ratios. The reader can verify this with
the data in Tables 2 and 3. Neither of these
mean calculations involves the parameter c
This shows that the behavioral identity under-
lies this result, that it is independent of the
theoretical matching equation, and that it is
not due to the fitting procedure, be it least
squares or other.

Table 3

Data from Davison and Jones (1995) for Bird 21 on nine concurrent VI VI schedules where

marked undermatching occurred (¢ = 0.54).

B,/B; R;/R; D2/P1 Log B;/B> Log R;i/R, Log p2/p1
3.05813 10.11111 0.302452 0.485456 1.004799 —0.51934
0.163176 0.069519 2.34722 —0.78734 —1.1579 0.370554
6.782114 65.66667 0.103281 0.831365 1.817345 —0.98598
0.068611 0.005025 13.65352 —1.16361 —2.29885 1.135245
14.23062 99.00000 0.143744 1.153224 1.995635 —0.84241
0.857934 0.709402 1.209376 —0.06655 —0.14911 0.082561
2.782693 5.451613 0.510435 0.444465 0.736525 —0.29206
0.26971 0.081081 3.326429 —0.5691 —1.09108 0.521978
4.776889 10.11111 0.47244 0.679145 1.004799 —0.32565

Geometric Means Arithmetic Means
1.2939 1.6103 0.8035 0.1119 0.2069 —0.0950

Note. Format is as in Table 2. The mean of the log p ratios does not give the same log bias value obtained by the authors

(0.00), but other order is still present (see text).
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The fitting procedure will, however, influ-
ence the value of ¢ and a. Except for the case
of strict matching, the identity of Equation 21
does not predict what the fitted values of ¢ and
a will be. That will be determined by the
particular set of numbers generated by the
subject and experimenter, and by the fitting
procedure itself. Davison and Elliffe (2009)
have shown that the least squares procedure
underestimates the sensitivity parameter c.
This is due to the variance, unequal variances,
and asymmetrically skewed distributions
among the response and reinforcement mea-
sures. The logarithmic transformation amelio-
rates some of these distortions and is prefer-
able to the raw ratio fits, as Baum (1974, 1979,
1983), too, has discussed, but it does not
remove them. A “‘best” fitting procedure is
not yet known or agreed upon.

Because the generalized matching law of
Equation 20 describes behavior well, the identity
of Equation 21 implies that so might the equation

Bi_ (@)d
By 41

expressing the response ratios as a function of the
probabilities rather than the rates of reinforce-
ment, but with different bias and sensitivity
values. Figure 1 compares plots of Equations 20
and 28 using the data in Table 3.

Graphs for the remaining 5 pigeons in the
study showed this alternative relationship to be
linear in log coordinates, with negative slopes,
but with R-squares consistently smaller than
with the conventional model (group mean R-
square = 0.83 versus 0.95). However, the slope
values were consistently closer to ‘‘matching”’
(i.e. to —1.0). Slopes for the conventional
model varied from 0.36 to 0.60 with a mean of
0.49. Slopes for the alternative model varied
from —0.54 to —1.23 with a mean of —0.92.
Bias values were small in both cases.

This finding would give a mixed answer to a
simple question such as, “Which variable—
rate or probability—is the more important,
influential, operative, or causal?’”” It would
appear that both variables are acting simulta-
neously but in different ways. Clarifying these
differences would require a more molecular
examination of the underlying factors leading
to the particular obtained reinforcement rates
and probabilities, which is not the main
purpose of this article.

(28)
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Fig. 1. Data from Table 3 plotting log B;/B> as a

function of log R;/R, (top) and as a function of log p,/
p1 (bottom).

Application to Single Schedules and an
Empirical Finding

Catania and Reynolds (1968) exposed pi-
geons to a number of single VI schedules
ranging in value from 10.5 to 420 seconds.
They plotted responses per min against rein-
forcements per hour and obtained monoton-
ically increasing negatively accelerated func-
tions. The identity of Equation 5c states that
for each single VI value, rate of response b will
equal rate of reinforcement r divided by the
probability of reinforcement p. It does not
make a specific prediction of how p varies with
r across conditions if b also varies across
conditions—linearly, nonlinearly or even in-
dependently of r If b is free to vary, this
relationship is not forced, but it can be
determined empirically. Catania and Rey-
nolds’s data were reanalyzed after converting
both r and b to rates per min so that their
quotient would give the obtained p. The
results are plotted on the left side of Figure 2.
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Fig. 2. Data reanalyzed and replotted from Catania and Reynolds (1968) for the last 3 pigeons in their Figure 1.
Left axis is the number of reinforcements per min divided by the number of responses per min. Intercept and slope
constants from the linear regression lines were used to predict responses per min vs. reinforcements per min in the right
column, using an hyperbola based on an identity described in the text.

The data were highly linear in these
coordinates and over this range, hence they
were fitted with a straight line of the form p =
o + P r. Substituting this expression for p into
the identity gives the hyperbola.

r

:oc—|—|31"

(29)

Using the fitted intercept and slope constants,
the predicted values for b are plotted with the
obtained values for b on the right side of
Figure 2.

Dividing both the numerator and denomi-
nator of this last equation by B gives

bz(l/B)rz kr _ kr
o/B+r r+a/f r+ak

(30)

which can be compared to Herrnstein’s
theoretical model in Equation 3. Herrnstein’s
r ¢ becomes o/ while 1/B closely approxi-
mates the asymptotic response rate. For
example, in the top two panels of Figure 2
the asymptote appears to be around 75
responses per min and the fitted value for
is 0.0133, whose reciprocal is 75.2. The more
exact predicted asymptote is found by evaluat-
ing the linear equation when probability p
reaches one, and is (1 — a)/B or 75.1
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responses per min. Substituting this correction
complicates the equations somewhat while
making little quantitative difference. With the
units used here the absolute values for o are
small. However, o cannot be zero, or the
animal would always respond at its asymptotic
response rate regardless of reinforcement rate.

The quantity o/ necessarily has the same
dimensions as 7, and in this example evaluates
to 0.06 reinforcements per min, or 3.61 per
hour. This is compatible with Herrnstein’s
theoretical hypothesis but I leave its interpre-
tation to the reader.

Equations 29 and 30 suggest exploring
which classes of experimental variables or
““subject strategies’’ affect o and B differential-
ly. Experimental variables might include rein-
forcement magnitude, deprivation level, or
response effort. Subject strategies might in-
clude proportional changes in the postrein-
forcement pause, or changes in running rates,
within-bout response rates or in the number
and durations of between-bout pauses. On VI
the subject has minimal control over r but
through these can manipulate p.

The linearity between p and 7, and the
proportion of variance accounted for suggest
the possibility that the obtained probability of
reinforcement may be at least as effective a
controlling variable as rate of reinforcement
even on interval schedules, and allows the
hypothesis that the hyperbolic relationship
between response rate and reinforcement rate
might be more derivative than primary.

Limitations and Extensions

The identity of Equation 5 is formulated
only for the obtained values of the response
rate, reinforcement rate, and the conditional
probability of reinforcement; not for any of
the many other variables known to character-
ize or influence behavior. Furthermore, it is
based only on their totals or arithmetic means,
and says nothing about their instantaneous,
sequential or distributional characteristics.

This identity and those in Equations 14, 16
and 21 are purely quantitative, atheoretical
molar descriptions of how the obtained values
of these variables are related. They do not
explain, for example, behavioral contrast or
choice or why matching occurs, when it does.
They do not address, and I will not here
address, the vast literature on molecular
theoretical models (momentary, local, or
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global maximizing, melioration, etc.) pro-
posed as explanations for these phenomena.
Neither do I here address the literature of
behavioral economics where the same identi-
ties apply, with the variables usually inverted
and renamed to represent the cost of respond-
ing or perhaps the cost of waiting (Collier,
Johnson, & Mathis, 2002). However, the
identities can serve as checks and guidelines
for these molecular theoretical models, and
perhaps aid in the interpretation of findings.
The algebraic identities dictate that:

1) Any quantitative theoretical model that
predicts an absolute or local response rate
b must also equal r/p. The two equations
can then be solved simultaneously to yield
other relationships.

2) Any theoretical model that predicts a single
B;/B; ratio pair must also equal (p,/p;)*(R;/
R). If multiple pairs are considered simul-
taneously the result is more complex but a
similar relationship holds for their geomet-
ric means.

3) Any theoretical model that predicts a
relative response rate B;/(B; + B,) must also
equal (R; p2)(R; p> + R5 p;), or equivalently
R;/(R; +my5 R,). If three (or n) components
are involved then the summation forms of
Equations 15 and 16 apply. However, any
one of the components can be temporarily
or permanently discarded or ignored and the
relationship will hold for the other two (or n-
1) components. That is, one can drop R; (or
Ry, as is done in the ratio formulation) and
the identities will still hold. It is mostly for
the single response case that the empirically
unmeasurable Ry has been considered theo-
retically appealing as a hypothetical vari-
able.

Historically, most operant quantitative mod-
els regarded response rate as primarily a
function of reinforcement rate (e.g., Herrn-
stein, Catania, Baum as cited herein). Some
more recent models have considered various
explicit or implicit reinforcement probabilities
(e.g. the Stay/Switch model of MacDonall,
2009). The position taken here is that we need
to consider and measure both variables. Behav-
ior is presumed to be simultaneously sensitive
to both and affects both through interaction
and continuous feedback, at least until a stable
state is reached.
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Although Equation 5 is an equation that
must hold, it is only one of many possible
equations that may also hold. The identity
should become increasingly useful as we
discover or devise and incorporate additional
equations relating its three variables to them-
selves or other variables. These additional
equations may be empirical, theoretical, or
mathematically definitional; and one may
anticipate that some of them will be situa-
tion-specific rather than universal. Even in the
absence of such additional equations the
identity has conceptual and computational
utility beyond the examples given here.
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APPENDIX

VI data from Catania and Reynolds (1968) showing reinforcement rates, response rates, and the
obtained probability of reinforcement p (as their ratio).

Bird R/hr R/min B/min p r/(+ fr)
278 8.6 0.143 41 0.0035 52.96
17 0.283 66.84 0.0042 62.02
34 0.567 71.15 0.0080 67.97
86 1.433 74.35 0.0193 72.16
171 2.850 73.28 0.0389 73.63
343 5.717 74.69 0.0765 74.41
279 9 0.150 29.11 0.0052 28.06
17 0.283 38.7 0.0073 39.07
34 0.567 53.3 0.0106 50.13
86 1.433 62.3 0.0230 60.49
171 2.850 61.46 0.0464 64.84
343 5.717 68.3 0.0837 67.30
281 9 0.150 43.68 0.0034 37.45
86 1.433 62.39 0.0230 62.67
86 1.433 63.2 0.0227 62.67
171 2.850 63.25 0.0451 65.22
343 5.717 67.05 0.0853 66.60

Note. Right column is the predicted response rate, where ris reinforcement rate and « and f are the intercept and slope
constants shown in Figure 2.



